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In resistive evolution a quasistatic plasma is assumed to be in mechanical equilibrium at 
every instant of time. Equilibria are determined, in part, by magnetic flux constraints. The 
evolution of these flux constraints depends only on the electric field parallel to the magnetic 
field, as given by Ohm’s law. The use of a new, magnetic-vector-potential formalism for the 
resistive evolution problem is discussed. This formalism has advantages of generality and 
simplicity as well as providing greater numerical accuracy in certain cases (such as the evolution 
of a magnetic island) where artificial singularities occur when using magnetic surface variables. 
Sample calculations of the evolution of a strongly driven (pinch) discharge with cylindrical 
symmetry and of the nonlinear growth of a helically symmetric m = 2 magnetic island in the 
Rutherford regime are given. :(” 1989 Academic Press, Inc. 

I. INTRODUCTION 

In many cases the time scale of interest in describing magnetic field behavior in 
a plasma is much longer than the inertial (Alfvenic) time scale. In such cases it is 
natural to regard the plasma as satisfying the mechanical equilibrium equations at 
every instant of time, that is, the quasistatic plasma evolves rather than being 
dynamic (see, for example, Refs. [l-3]). Magnetic field evolution in time is governed 
by the equations 

-$VxE, (la) 

E= -vxB+qj, (lb) 
jxB=Vp, (lc) 

VxB=j. (Id) 

Equations (la) and (Id) are Maxwell’s equations, Eq. (lb) is Ohm’s law, and 
Eq. (lc) is the mechanical equilibrium equation (the equation of motion neglecting 
the acceleration terms). While Ohm’s law in the form given by Eq. (lb) is a 
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simplified approximation, experiment seems to indicate that the component of E 
parallel to B is often well represented, and 

E.B=q,,j.B. (2) 

with q,, the plasma parallel resistivity, given, for example, in Ref. [4]. 
Although the velocity v appearing in Ohm’s law, Eq. (lb), at first sight seems to 

play a role in the evolution, in fact, magnetic field evolution proceeds independently 
of v and depends only on the component of E along B given by Eq. (2). This result 
is obtained by considering, instead of Eq. (la), the time rate of change of magnetic 
flux through the circuits formed by a representative set of magnetic field lines 
[S, 63. The rate of change of flux is given by 

-$jiA.dl= -~~.dl=$E.dl. 

The fact that dl is along B means that the rate of change of flux through the circuit 
is independent of both: (1) components of E perpendicular to B; and (2) motion of 
the circuit. 

The plasma pressure p and plasma resistivity q also enter into resistive evolution. 
Additional equations could be written to evolve these quantities, but, for simplicity, 
p and q are assumed here to be given. In particular, p is here assumed to be zero, 
since this is a reasonable simplifying assumption for the cases considered. 

Equations (1) are thus replaced by 

0) 

jxB=O, (3b) 

VxB=j, (3c) 

VxA=B, W) 

where the line integral in Eq. (3a) is taken along a magnetic field line either until 
the line closes on itself or “for a very long distance” (a discussion of this is given 
in Ref. [6]). The determination of electrostatic potential and velocity that, along 
with the vector potential from Eqs. (3) satisfy Eqs. (1) is discussed, for example, in 
Ref. [S]. 

Calculations of resistive evolution of magnetic fields in relatively symmetrical 
configurations such as the slab, cylinder, or axisymmetric configurations are now 
commonly done using various formalisms. For 2-dimensional, axisymmetric 
configurations such as the Tokamak, a formalism using magnetic surface variables 
is used (see, for example, Refs. [l-3, 7]), and this formalism applies also to 
compact torus equilibria [S], but not to the more general case of helical symmetry. 

Except for the, often very brief, initial phase, where inertia is important, the 
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growth of magnetic tearing modes is actually resistive evolution [IS]. Calculations 
of such cases have been done in two ways: (1) many authors use the 
magnetohydrodynamic method, circumventing its inherent difficulties in various 
ways; or (2) semi-analytic methods, including special orderings, are used (see, for 
example, Refs. [ 10-121). 

Taylor’s theory of relaxed states [ 13, 141 provides a prototype for resistive evolu- 
tion in one special case that has been identified as the limit of a completely ergodic 
magnetic field [ 15, 51. One reason Taylor’s method is significant for the present 
work is its use of the vector potential rather than magnetic surface variables as we 
shall discuss. 

In this paper a new formalism for the resistive evolution problem, closely related 
to the physical equations in the form given by Eqs. (3), is used. This formalism 
encompasses the above-mentioned work and is not restricted to axisymmetry. 
Imperfect magnetic surfaces, and the Taylor limit in particular, can also be treated 
although the discussion in this paper is limited to the case of perfect magnetic 
surfaces. A plasma not having magnetic surfaces has many fewer degrees of freedom 
(the number of representative field lines needed to characterize the plasma) and the 
computation is therefore much simpler. However, additional physics assumptions 
(about the broad field-line distribution functions needed) must be made that 
complicate the discussion. 

The new method, like Taylor’s, is formulated in terms of the vector potential 
rather than magnetic surface variables. This has an important advantage of avoiding 
complicated definitions of toroidal and poloidal fluxes, definitions that are generally 
different in different flux regions; also, the equations themselves are simpler. 
Another advantage is that singularities that sometimes occur when using magnetic 
surface variables, for example, in the case of a magnetic island, are avoided. With 
a magnetic island, the quantity at,$/aG is infinite at the island X point, where $ is 
the toroidal magnetic flux and G is the helical flux. The singularity is not physical, 
in the sense that the magnetic field is certainly not singular (on the contrary, an 
extremely small change in magnetic field causes the magnetic island). This artificial 
singularity makes computations using magnetic surface variables less straight- 
forward. 

II. RESISTIVE EVOLUTION EQUATIONS 

The resistive evolution equations, discretized with respect to magnetic field lines, 
can be written in the form [6] 

I - g . BF; dr = 0,. j vB2Fi dz, 

dr, I)= f a,(f) F,[S(r)], 
i= 1 

(4b) 
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F;>O, 

1= c F,, 
I= I 

VxB=aB, 

VxA=B. 

(4c) 

(Ad) 

(4e) 

(4f) 

B is the magnetic field and A the vector potential with the two related by Eq. (4f). 
The integration in Eq. (4a) is taken over the entire plasma volume with dr a volume 
element. The quantity q is the plasma resistivity, which is assumed for simplicity to 
be a given spatial function. Crossing Eq. (4e) with B we obtain 0 = (V x B) x B, 
which is the plasma mechanical equilibrium equation. 

The quantity ci is defined by Eqs. (4b), (4c), and (4d). Equation (4b) expresses 
cr as a sum over N “effective field lines,” each having a distribution in space given 
by Fi with coefficient oi. In this paper we consider only the case where the magnetic 
field forms magnetic surfaces. The distribution function F, is a function of magnetic 
surface, labeled by function S(r), so that F, = F,[ (S(r)]. The functions F,(S) give a 
measured discretization in the space of magnetic field lines. Each has compact 
support near a single magnetic surface. The functions E;(S) need also to satisfy 
Eqs. (4~) and (4d), and {F,} (the set of all Fi for i= 1, N) must spatially charac- 
terize the plasma. 

In solving Eq. (4f) for A, two boundary conditions are needed: 

(6) 

where “wall” denotes a toroidal magnetic surface that forms the boundary of the 
plasma volume (physically this might be a conducting wall with toroidal and 
poloidal gaps), and the path integrals are taken the long and short way around this 
toroidal surface. Equation (5) has a different significance than Eq. (6). Equation (5) 
determines an integration constant in the solution of Eq. (4f) for A in terms of B, 
while Eq. (6) constraints the equilibrium equation, determining an integration 
constant of Eq. (4e), which can be taken as the principal magnetic axis value of the 
magnetic field, B,(t). 

This system of equations can be conceptually separated into two parts: equi- 
librium equations that determine B and A given {oi} and B,, and time evolution 
equations allowing (ci(t)} and B,(t) to be advanced in time. The equilibrium equa- 
tions consist of the spatially discretized versions of Eqs. (4b) and (4e), with {gi} 
and B, as given input parameters. The N + 1 parameters ( rrr > and B, are advanced 
in time using the N+ 1 equations given by Eq. (4a) for i= 1, N and Eq. (6). 

In its computational form, Eq. (4a) calculates aA/at using (B - B”ld)/dt, where 
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Bold, the preceding value of the magnetic field, is the only appearance of a quantity 
referring to the preceding time value t = told. All other quantities are evaluated at 
the current time. Thus, symmetrical time differencing is not used. This scheme is 
implicit and would be expected to be numerically stable no matter how large the 
time step At. An advantage of nonsymmetrical time differencing is that the limiting 
case At + cc is meaningful and gives a solution of the steady state problem (Ohmic 
state). 

In the following sections these equations will be discussed and sample calculations 
presented for the cases of cylindrical and helical symmetry. 

III. CYLINDRICAL SYMMETRY 

Cylindrical symmetry means that all quantities depend only on radius Y, where 
Y, 8, and z form a cylindrical coordinate system. In component form, Eq. (4e) is 
then 

aB- 
--=oBe, 

dr 

if (rBe) = aB,. 
(7) 

These equations are solved on a radial mesh as ordinary differential equations by 
integrating from r = 0 using the initial values B,(O, t) = 0, B,(O, t) = B,(t). 

The functions F,(p) used are shown in Fig. 1 for N= 10, where p = r/a, with a the 
wall radius (N= 20 is used in the cylindrical evolution calculations described 
below). F,(p) has a small flat region at p =0 chosen to have width l/N (as shown 
in Fig. 1). 

The N+ 1 time evolution equations were solved using a damped Gauss-Newton 
minimization routine (the sum of the squares of the errors from the N-i- 1 equations 

“0 0.2 0.4 0.6 0.6 1.0 
P 

FIG. 1. Field line distribution functions assumed. p is a magnetic surface label defined in the text. 
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FIG. 2. Evolution of a strongly driven cylindrical discharge in response to a doubling of the driving 
electric field at t= 0. Profiles of various magnetic field quantities are shown for the times t = O., 0.001, 
0.003, 0.01, 0.03, 0.1, 0.3, and 1.0 a2/q. 
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is minimized) [16]. For one time step, typically only one calculation of the 
Jacobian was required, followed by a few subsequent iterations without recalcu- 
lating the Jacobian. For N effective field lines, about $N equilibrium calculations 
are required per time step. 

Figure 2 shows a numerical example. The resistivity profile is flat and constant in 
time. The initial state is a steady (Ohmic) state with applied electric field E and flux 
$ such that the dimensionless quantity Ea’/(y+b) N 1, corresponding to a strongly 
driven discharge. At t = 0 the electric field is suddenly doubled, with the flux held 
constant. The graphs show various profiles at times t = 0, 0.001, 0.01, 0.03, 0.1, 0.3, 
and 1.0 a*/q. A skin effect is apparent in the quantity E,,, = v]aB*/B, . (In toroidal 
geometry E,,, is the resistive toroidal loop voltage divided by the toroidal circum- 
ference, E,,, = j 4 j . dl/( 2&N;), where the line integral is taken along a magnetic 
field line.) Figure 2 shows that a time a*/9 well characterizes the time for relaxation 
to an Ohmic state. 

For the results shown in Fig. 2, 20 effective field lines (N= 20) are used with 41 
radial mesh points used in calculating equilibria. Doubling these numbers produced 
little change in the results. 

IV. HELICAL SYMMETRY 

With helical symmetry, quantities depend on only two variables r and 
u E m6’ + kz, where r, 8, z form a cylindrical coordinate system. Defining 

and 

G=krA,-mA, 

(8) 
HrkrB,-mB,, 

with A the vector potential and B the magnetic field, one finds [17] from 
B=VxA, j =VxB, and jxB=Vp that H=H(G), p=p(G), and 

a*G lm*-k2r28G+m2+k2r2d2G 
g+- r m* + k2r2 ar r* au* 

- 9 (m’ + k*r*). 
dG (9) 

The quantities G and H are magnetic surface quantities (a magnetic surface 
quantity S satisfies B . VS = 0), in fact, 

and 

H=& (rz-mJ), 
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where Ic/, x, Z, and J are the totoidal and poloidal fluxes of magnetic field and 
current. The significance of the quantity R is that the helically symmetrical con- 
figuration is imagined to be bent into a large-aspect-ratio torus with major radius 
R, where the only effect of toroidal curvature is to introduce a periodicity constraint 
into the axial wavenumber k, so that k = n/R. 

For simplicity, we assume zero pressure in Eq. (9). Then dH/dG = o(G) and equi- 
libria are specified by giving g(G) and the principal magnetic axis value of H, 
denoted by H,. Equation (9) can then be solved for G(r, U) [18]. The magnetic 
fields are given by 

B,= 

B, = 

(12) 

To find a vector potential, we choose a gauge with A, = 0. We are free to do this 
because Eq. (4a) is gauge invariant. The other components of A are given by 

A, = ! sr r’B,(r’, u) dr’ 
r 0 

(13) 

AZ = AI, - s 
r B@(r), u) dr’, (14) 

0 

where the integration constant A,, is the value of A; at r = 0. Boundary conditions 
involve the gauge invariant fluxes II/ and x, defined in terms of A by 

*=J 
2n 

A,adO=a s A, du, (15) 
0 

x= A,dz=R 2n 
I s 

A; du, 
0 

(16) 

where both integrals are taken at the wall at r = a. By using simple algebra AZ, can 
be determined from x(t) (or, equivalently, dA../dt from dx/dt) using Eqs. (14) 
and (16). 

Resistive evolution with N effective field lines consists in solving the N equations 
given by Eq. (4a) together with Eq. (15) in the N+ 1 variables gi for i= 1, N, 
and H,. 

In resistive evolution of a plasma with helical symmetry, it is convenient to let 
the magnetic surface label S appearing in the general equations be the helical flux 
G. As an example we consider the resistive evolution of a configuration with a 
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magnetic island, as shown in Fig. 3. There are now three different magnetic surface 
regions: axis-region I, wall-region II, and island-region III. 

The field line distributions F,(S) now must be defined separately in the three 
regions. We have taken them to be of the simple form shown in Fig. 1, where p is 
now defined as (G - G,)/(G, - G,), with G, = G,, G,, and G,, in regions I, II, and 
III, where GX, G,, G,, and G,, represent the values of G at the X point, axis, wall 
and 0 point. This resealing of the flux surface label from G to p is trivial as long 
as G,, Go, GX, and G, are constants. 

A difficulty is that we are specifying equilibria by specifying o(G) and H,. Thus, 
the quantities G,, Go, GX, and G,. are results of the equilibrium calculation and are 
not known beforehand. 

In general, G,, G,, G, and G,. can be fixed by varying parameters specifying the 
solution of Eq. (9), so that at every iteration of Eq. (9), G,, G,, GX, and G, take 
given values. Since equilibria are unchanged by adding a constant to G, we need to 
specify three quantities, say G, - G,, G, - G,, and G, - G,. 

If Eq. (9) is represented by L(G) = F, where L is the linear operator appearing on 
the left-hand side of Eq. (9) and F is the nonlinear functional of G appearing on the 
right-hand side of Eq. (9), then Newton’s step [ 181 is defined by the linear problem 
(see Appendix A) 

L(%)-gi?G=F-L(G)& (17) 

Three additional parameters denoted by CX, fl, and y are necessary to keep G, - G,, 
Go - G,, and C, - G, fixed as three additional boundary conditions. The Newton’s 
step then becomes 

(18) 

X POINT 

c REGION III 

FIG. 3. Helically symmetrical configuration with an m = 2 magnetic island. Magnetic surfaces inter- 
secting a plane at constant z are shown. 
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This is a linear system of equations in 6G, 6~1, S/I, and 6y with three additional 
boundary conditions determining the three additional variables 6cr, S/3, and 6~. 

We have taken the three additional parameters CI, p, and y to be ox, g,,, and oU, 
where a(G) is represented in the form 

r 

ax + (a, - axIf,( region I, 

c~ = ax + (a,. - ax)fn(G), region II, (19) 

ox + (~0 - ax)frn(G), region III, 

with f,, fii, and fm given functions of G varying from 0 at G = G, to 1 at G = G,, 
G,, or G,. The quantity ow, the value of c at the wall, is an additional parameter. 

The enumeration of variables is now as follows. Instead of N variables ci for 
i = 1, N, we have the N new variables: G, - G,; G, - Gx; G,, - G,; N - 4 values of 
f,JG) for internal field lines in the three regions k = I, II, and III (eliminating the 
four field lines at the axis, 0 and X points, and wall); and o,~, the value of (T at the 
wall. 

This scheme allows the domain of functions of G to remain fixed during solution 
of the equilibrium problem. Note that it is not possible to simply define 0 as a func- 
tion of a scaled flux variable, say p as defined above, which varies over the fixed 
domain 0 < p d 1. So defining 0 as o(p) rather than o(G) leads to an equilibrium 
problem that is overdetermined. 

As an example of a calculation of resistive evolution of a magnetic island we 
consider the case of the m = 2 mode in the Tokamak. The initial configuration is a 
small island equilibrium obtained by using a l-dimensional approximation 
discussed in Appendix A to determine a(G) and to provide and initial guess for the 
equilibrium solver. The initial l-dimensional configuration is a cylindrically sym- 
metric steady (Ohmic) state for a particular choice of v(r), slightly perturbed by the 
addition of a small helical field to cause a small magnetic island. In two dimensions, 
we first find the exact equilibrium corresponding to the l-dimensional approxima- 
tion. Then the configuration is allowed to evolve to a new Ohmic state, which is the 
saturated island state of the m = 2 mode. The physics of this process is strongly 
influenced by the evolution of the resistivity profile. However, being here most 
interested in methodology, we assume, for simplicity, that q(r) is constant in time. 

Figure 4 shows a calculation of island growth for a q profile of the form 

q(r) = C( 1 + r*/ri), (20) 

as used in Ref. [lo], for r,, = 0.8 and C such that the m = 2, n = 1 rational surface 
occurs at r = 0.5 (assuming R/a = 3). Pressure is assumed zero. 

Forty effective field lines are used and these define the G contours shown in 
Fig, 4. Remeshing is done to redistribute the field lines as the island grows. The 
island grows to most of its full size in about At = 0.01 a*/q(O). 

The saturated island width (assuming constant q(r)) is given by w/a = 0.094, 
somewhat smaller than the value 0.13 given in Ref. [lo]. The discrepancy might be 
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FIG. 4. Magnetic surfaces during growth of an m = 2 island in a Tokamak. The numbers indicate the 
elapsed time in units of 0.001 a2/q(0). The calculations assumed 40 effective field lines, and used 216 r 
mesh points and 14 u mesh points. 

accounted for by the use of a quasilinear approximation in Ref. [lo]. Figure 5 
shows that initial and final (T profiles across the island 0 point. The final cr profile 
across the island satisfies v,,G~ = ~]~a, (since H, ‘v H,, see Appendix B). In the final 
state c0 > ox because the radius of the X point is slightly larger than that of the 0 
point and thus Q<v~. 

The nonlinear time evolution equations were solved using the same method 
discussed in Section III. Solution of the nonlinear equations typically required two 
calculations of the Jacobian per time step (each calculation of the Jacobian requires 
N+ 2 equilibrium calculations) plus some number of additional iterations. The fact 
that the equilibrium calculation itself was iterative and did not have machine preci- 
sion made the solution of the nonlinear evolution equations more difftcult, as the 
nonlinear solver assumed evaluation with high precision. Also, relative scaling of 
variables relating to the regions inside and outside of the island was essential for the 
nonlinear solver to work properly. 
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0 0.2 0.4 0.6 0.8 1.0 

FIG. 5. (T(T) profiles through the island 0 point at the initial (t = 0) and final [[ = a*/q(O)] times. 

V. DISCUSSION 

The problem of equilibrium bifurcation is of importance and should be discussed. 
At a bifurcation point, two distinct equilibrium solutions exist. For example, 
imagine a cylindrically symmetrical plasma being evolved using the formalism for 
helical symmetry. A bifurcation point in the evolution occurs when a helically 
perturbed equilibrium state with G(r, u)= G,(r) + G,(v) cos(u), where G, is 
infinitesimal, becomes possible. That is, Eq. (B2) in Appendix B is satisfied for a 
G,(r) that has a continuous derivative as well as satisfying the boundary conditions 
given by Eqs. (B4) and (B5). At such a bifurcation point the equilibrium solution 
procedure breaks down and the linear problem defined by Eq. (17) becomes 
singular. To evolve past a bifurcation point it is usually necessary to jump a finite 
distance around it, deciding which equilibrium solution branch to follow, e.g., the 
cylindrically symmetrical one or the helically symmetric one. The proper branch to 
follow is the most physically relevant one, e.g., the stable branch. Bifurcation points 
are the points of marginal magnetohydrodynamic stability (where the Euler- 
Lagrange equation of the energy principle is satisfied). In evolving a cylindrically 
symmetric conliguration, the marginal stability points usually mark the transistion 
from stability to instability of the cylindrical state toward the helical mode with 
the given m and k, and not the opposite transistion, since before encountering the 
bifurcation point the cylindrical state is presumably stable. In this case, at the 
bifurcation point one should change over to the helical solution. 

Broad field line distribution functions Fi are not used for the calculations 
discussed here. The usefulness of the present formalism is that it allows a unified 
description of resistive evolution when magnetic surfaces do not exist. In such cases, 
instead of say 40 effective field lines, two (as used to lit reversed field pinch 
data [19]) or even one (as in the Taylor ergodic limit) are used, which greatly 
simplifies the numerical problem. Because such calculations are less computa- 
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tionally challenging and because of the central importance of additional physics 
assumptions, these cases are not discussed here. When broad field line distributions 
are used in situations with cylindrical or helical symmetry, one is implicitly 
assuming that the magnetic field is weakly stochastic because of three-dimensional 
effects (a discussion of the possible source of magnetic field stochasticity is given in 
Ref. [6]), and then consider independently the evolution of the (spatially averaged) 
underlying configuration with magnetic surfaces. 

As 3-dimensional equilibrium calculations become feasible, completely self consis- 
tent calculations will be possible, where the F,‘s are found by field line tracing of 
actual calculated magnetic fields at each instant of time without regard for whether 
or not magnetic surfaces exist. 

The computational work in resistive evolution is dominated by the equilibrium 
calculation. For the 2-dimensional case the computing time for high resolution 
cases is significant. .As discussed in Appendix A, the equilibrium iteration involves 
solving a large linear system of equations having block tridiagonal structure. Block 
Gaussian elimination is one method for solving these equations. It is more efficient 
to ignore the block structure and to consider the linear matrix to be fully banded, 
making use of optimized band solvers [20]. More efficient still would seem to be 
the use of multigrid methods [21]. 

For cylindrical symmetry, including the Shafranov finite aspect ratio corrections 
if desired (very little extra computing time is necessary for this), resistive evolution 
using the method discussed here allows very rapid computations. 

APPENDIXA: REMARKS ON THE SOLUTION OF 
THE HELICAL EQUILIBRIUM PROBLEM 

The domain of G(r, u) is the region 0 < r < b and 0 < u < 271. As shown in Fig. Al, 
a conducting wall boundary condition is assumed at r = 6. The vacuum region from 
the plasma boundary at r = a to the wall at r = b (if such a region is included) is 
handled by making use of the Fourier-Bessel function analytic solutions. A vacuum 
region could, of course, be included in the computational domain, but it is much 
more efficient to handle such a region separately. 

Considered as a function of u alone, G(u) is assumed to have the properties: G(u) 
periodic over 0, 271; and aG/au = 0 at u = 0. The boundary conditions at the radial 
boundaries are expressed in terms of Fourier components, so it is necessary to 
discuss Fourier transforms. By Fourier’s theorem, over the discretized domain 
24,=27r(j- 1)/N, forj= 1, N, 

G(u,) = 5 a, cos[(n - 1) u,] 
“=I 

(Al) 
a”=$ ,f G(uj) COS[(n- 1) ~j], 

/=I 

581/85:2-6 
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FIG. Al. Geometry of the computational mesh in the r. u plane. Use is made of analytic Fourier- 
Bessel function solutions in the vacuum region a < rib, if such a region is included. 

where a, is a real mode amplitude. The corresponding sine terms are zero by the 
requirement that aG/au = 0 at u = 0. The actual computational domain in u consists 
of only the points uj = (j- 1) rc/(jmaX - 1) for j = 1, j,,, , where N = 2(j,,, - 1 ), 
using the fact that G(uj) forj= 1, N is symmetrical about j= j,,,. This follows from 
G(U)= G(27r- U) (as seen from Eq. (Al)), which also implies that aG/au=O at 
u = rc. Similarly, the Fourier coefficients a, are symmetrical about n = j,,, so only 
Lax coefficients need be considered. In terms of the j,,, points of the computational 
domain, Fourier inversion uses the formulae 

G(u,) = c A, cos[(n - 1) u,] 
II=1 

2wn A,=- ‘r wjG(uj) cos[(n - 1) u,], 
.L,,- 1 i=, 

(42) 

with the weighting wj defined as: wj = 1 except for j = 1 and j = j,,, for which wj = 4. 
The boundary conditions on G(r, U) at r = 0 and r = b are: aG/ar = 0, r + 0: and 

G(b, U) = const. The general form of the boundary conditions for r + 0 and r = a is 

A, 
(dldr) A,, =fn’ 

where A,, is the nth Fourier component of G(u) as defined above and f, is a given 
quantity. As r -+ 0, the fn’s are obtained by the requirement of regularity at the 
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origin with the result that f, + 0 for n > 1 and fi + co. For r + 0, Eq. (A3) means 
effectively that the symmetrical Fourier component of G, A,(O), is a smooth limit 
of A,(r) as r --+ 0. The higher Fourier components, A,(O) for n > 1, are zero. 

In the vacuum region, a < r < b, Eq. (9) is linear with Bessel function solutions. 
The quantities f”, appearing in Eq. (A3), are obtained by demanding continuity 
from plasma to vacuum of G and aG/ar at r = a (this is generally not the free 
boundary condition, see the discussion in Ref. [22]). The answer for n > 1, given in 
Ref. [22], is 

f,= l x2 - l/x,’ 
where 

[ka(n - l)]’ 
K:(IbK:-TaRb) 

x’ = [m(n - l)]* + [ka(n - l)]* Kb 

x2= Cm(n- l)l’+ CW- 1)l’Kz 
IWn- 111 E’ 

645) 

using the simplified Bessel function notation K, = K,(, _ i)( 1 ku(n - 1 )I ) and so on. 
For n = 1, A, itself is specified (that is, the average value of G at the wall is 
specified). 

Let i be the discretized variable in the r direction, so that ri = (i - 1) a/(&,,,, - 1). 
Let 6G, be a vector with j,,, components giving hG(r,, ui) for j = l,j,,,. 
Equation (17) then takes the tridiagonal form 

where 6G, and Ri are column vectors with j,,, components and Ai, Bi, Ci, and 
WW% are A,,, by A,,, square matrices given by 

1 m2 - k2r? 
Ai=(dr)Z 1-2ri(m2+k’rf)dr ’ 1 

2 
Bi= -02 I+ 

m* + k*ri 
rf(du)2 

T 

‘j=(dr)z 
m2 - k*r? 

’ + 2rj(m2 + k’rf) dr ” 1 
where I is the j,,, by j,,, identity matrix. T is given by 

-2 2 
1 -2 

T= 1 -2 1 
. . . 

-2 2 I. 

(A7) 

(A81 
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(aF/aG)i is a diagonal j,,, by j,,, matrix having as its jth diagonal component 
aF/aG(ri, u,). 

Boundary conditions of the general form given by Eq. (A3) result, when 
discretized, in the equations 

(A9) 

where c and z are vectors and a, b, x, and y are j,,, by j,,, matrices obtained from 
Eqs. (A3) and (A4) using the Fourier transform relations given by Eqs. (A2). These 
equations are used to eliminate 6G, and 6Gimax from Eqs. (A5), which then can be 
solved for 6G,, . . . . 6G,~~~ i in terms of R,, . . . . Rima, _ 1. 

The internal boundary conditions involve the values of G at the magnetic axis, 
0 and X points. These points are defined by being roots of the equation 
aG(r, u,)/ar = 0, where U, is the appropriate value of u (either 0 or rr). The evalua- 
tion of these internal values of G is discussed in Ref. [ 181. 

Finally, we note that the case m = 0 is special in that the value 6G, of 6G at the 
magnetic axis is zero to second order in r as r + 0. Thus, while other cases require 
variation of three additional parameters CI, p, and y to keep the three quantities 
G, - G,, Go - G,, and G,- G, fixed as discussed in Section IV, for m = 0, 
G, - G, is automatically fixed, so variation of only two parameters is required. 

APPENDIX B: ONE-DIMENSIONAL APPROXIMATION FOR SMALL ISLANDS 

The analysis given here follows that in Ref. [22] using the present notation. We 
write G(r, U) in the form 

G(r, u) = G,(r) + G,(r) cos(u), (Bl) 

where G, is small. G, approximately satisfies the equation 

1 m2 - k2r2 
G;‘+;m?fk2r2G;= 

2mk 

m2 + k2r2 > I 
-Hd” G 

dG 13 U32) 

where ’ denotes the radial derivative. Equation (B2) is obtained by substituting 
Eq. (Bl ) into Eq. (9) and expanding for G, small. H is H[G,(r)] and r~ is a[Go(r)]. 

By definition of the island width w, using a formula expressing w in terms of G, 

2 

, 

where r., denotes the “singular surface” where the island forms. By definition of 
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rs, Gb(r,) = 0. Equation (B2) is solved in the regions (0, r,) and (rs, a), where a is 
the wall radius, with boundary conditions 

G, regular, r + 0, (B4) 

G,(a)=O, (B5) 

in addition to Eq. (B3). These three boundary conditions imply a discontinuity in 
the derivative of G, at r =r,. The discontinuity in G; can be related to discon- 
tinuities in B, and BZ at rs, giving the current flowing along field lines in the island 
region. From Ref. [22], 

WI 

where the square brackets denote the discontinuity in the enclosed quantity, and w 
is the island width given by Eq. (B3). 

This solution identifies a(G) needed as input for the 2-dimensional equilibrium 
problem. Within the island region, a(G) is linearly interpolated between values at 
gX and 0,; that is, 

a(G) = a,+ (B7) 

with co- CJ~ from Eq. (B6). Outside the island region o(G) is obtained using the 
known values of a,(r) and G,(r). 

a(G) constructed in this way defines a 2-dimensional equilibrium that should 
closely match the l-dimensional approximation. Using the l-dimensional 
approximation as an initial guess, we find that the 2-dimensional equilibrium solver 
using Newton’s method converges. The agreement between 2-dimensional equi- 
librium solution and l-dimensional approximation is quite good for small islands, 
as shown in Fig. Bl. The l-dimensional approximation allows any size island (the 

-2’ 
0 0.2 0.4 0.6 0.6 1.0 

r 

FIG. Bl. Exact 2-dimensional equilibrium solution (solid curve) and l-dimensional approximation 
(dashed curve) for C,(r) (the cos(u) Fourier component of G(r, u)), 
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island width w must be specified). The approximation is valid as w + 0. For the 
case shown in Fig. Bl; the l-dimensional approximation gives the estimate 
(TV - (T~ = 0.0052 from Eq. (B6), while the exact 2-dimensional solution for the same 
size island gives rrO - cX = 0.0040. 

The resistive evolution of small islands can also be simply treated using the 
l-dimensional approximation. Considering field lines at the 0 and X points of the 
island, Eq. (4a) gives 

038) 

where ’ denotes a time derivative. Using G, - G, = 2G,, ‘lx ‘v vO, and H, N H, and 
using Eq. (B6), this becomes 

ti, -I; CC;]. (B9) 

Since u’ N Gil* from Eq. (B3), Eq. (B9) implies that w grows linearly with time. This 
approximate equation correctly indicates the initial island growth but does not 
show island saturation, which can be accurately calculated only by using the exact 
2-dimensional evolution equations, including evolution of the resistivity. 
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